ON TERNARY BI-QUADRATIC EQUATION

$$
2 x^{2}-3 x y+2 y^{2}=23 z^{4}
$$

K.Meena*

S.Vidhyalakshmi**

N.Sujitha***

M.A.Gopalan ${ }^{* *}$

Abstract:

We obtain non-trivial integral solutions for the Ternary Bi-quadratic Equation $2 x^{2}-3 x y+2 y^{2}=23 z^{4}$. A few interesting relations for each pattern among the solutions are presented.

Keywords: Ternary Bi-quadratic, Integral solutions.

2010 Mathematics Subject Classification: 11D25

[^0]
INTRODUCTION:

Diophantine equations have an unlimited field for research by reason of their variety. In particular, the Bi-quadratic Diophantine equations, Homogenous and Non Homogenous have aroused the interest of numerous mathematicians since antiquity [1-5]. However, often we come across homogenous bi-quadratic equations and as such one may require its integral solutions in its most general form. In this context one may refer [6-13] for problem on ternary bi-quadratic equations. This paper concerns with the problem of determining non-trivial integral solutions of the bi-quadratic equation with three unknowns given by $2 x^{2}-3 x y+2 y^{2}=23 z^{4}$. Explicit integral solutions of the above equations are presented. A few interesting relations among the solutions are obtained.

Notations:

P_{n}^{m} - Pyramidal number of rank n with size m .
$T_{m, n}$ - Polygonal number of rank n with size m .
$C P_{m, n}$ - Centered Polygonal number of rank n with size m .
$F_{4, n, 6}$ - Four Dimensional figurate number of rank n with size 6.
$P t_{n}$ - Pentalope number of rank n.

METHOD OF ANALYSIS:

The Ternary Bi-quadratic Diophantine Equation to be solved is given by

$$
\begin{equation*}
2 x^{2}-3 x y+2 y^{2}=23 z^{4} \tag{1}
\end{equation*}
$$

The substitution of the linear transformations

$$
\begin{equation*}
x=u+v, y=u-v \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
u^{2}+7 v^{2}=23 z^{4} \tag{3}
\end{equation*}
$$

(3) is solved through different approaches and the different patterns of solutions of (1) obtained are presented below:

PATTERN: 1

Consider (3) as

$$
u^{2}+7 v^{2}=16 z^{4}+7 z^{4}
$$

and write it in the form of ratio as

$$
\begin{equation*}
\frac{\left(+4 z^{2}\right)}{7 \mathbf{c}^{2}+v}<\frac{\left.\mathbf{c}^{2}-v\right)}{4-4 z^{2}} \frac{a}{b}, b \neq 0 \tag{4}
\end{equation*}
$$

The above equation is equivalent to the system of equations

$$
\begin{align*}
& b u-7 a v+(4 b-7 a) z^{2}=0 \tag{5}\\
& -a u-b v+(4 a+b) z^{2}=0 \tag{6}
\end{align*}
$$

Solving (4) \& (5) by the method of cross multiplication, we have

$$
\left.\begin{array}{l}
u=28 a^{2}-4 b^{2}+14 a b \tag{7}\\
v=-7^{2}+b^{2}+8 a b \\
z^{2}=7 a^{2}+b^{2}
\end{array}\right\}
$$

Substituting $a=2 p q, b=7 p^{2}-q^{2} \quad$ in (7) and using (2), we get

$$
\begin{aligned}
& x=x(p, q)=-147 p^{4}-3 q^{4}+126 p^{2} q^{2}+308 p^{3} q-44 p q^{3} \\
& y=y(p, q)=-245 p^{4}-5 q^{4}+210 p^{2} q^{2}+84 p^{3} q-12 p q^{3} \\
& z=z(p, q)=7 p^{2}+q^{2}
\end{aligned}
$$

which represent the non-zero distinct integer solutions to (1).

PROPERTIES:

$>x$ 【, $q^{-}-y$ 【, $q_{-}^{-} t_{4, q^{2}}-12 F_{4, q, 6}+22 C P_{9, q}+6 P_{q}^{4}+t_{168, q} \equiv 98\left(\operatorname{nod} 131_{-}^{-}\right.$

PATTERN: 2

Instead of (4), consider the form of ratio as,

$$
\begin{equation*}
\frac{\left.\mathbf{(}+4 z^{2}\right)}{\left.\mathbf{(}^{2}-v\right)}=\frac{\left.7 \mathbf{(}^{2}+v\right)}{\left(-4 z^{2}\right.}<\frac{a}{b}, b \neq 0 \tag{8}
\end{equation*}
$$

Following the analysis similar to pattern-1, the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x=x(p, q)=245 p^{4}+5 q^{4}-210 p^{2} q^{2}+84 p^{3} q-12 p q^{3} \\
& y=y(p, q)=147 p^{4}+3 q^{4}-126 p^{2} q^{2}+308 p^{3} q-44 p q^{3} \\
& z=z(p, q)=7 p^{2}+q^{2}
\end{aligned}
$$

PROPERTIES:

$>x \backslash, q^{-}+y \llbracket, q^{-}-2 t_{4, q^{2}}-6 F_{4, q, 6}+222 P_{q}^{4}+t_{476, q} \equiv 2\left(\bmod 195_{-}^{-}\right.$
$>x$, $q_{-}^{-} y$ 【, $q^{-}-t_{4, q^{2}}-6 F_{4, q, 6}+2 C P_{9, q}+96 P_{q}^{4}+t_{78, q} \equiv 98 \operatorname{nod} 246_{-}^{-}$
>12 孝 $p, p_{\boldsymbol{\prime}}$ is a Nasty Number.

PATTERN: 3

Assume

$$
\begin{equation*}
23=(4+i \sqrt{7})(4-i \sqrt{7}) \tag{9}
\end{equation*}
$$

Write z as

$$
\begin{equation*}
z=z(a, b)=a^{2}+7 b^{2} \tag{10}
\end{equation*}
$$

Substituting (9) and (10) in (3) and employing the method of factorization, define

$$
4+i \sqrt{7} v=(4+i \sqrt{7})(a+i \sqrt{7} b)^{4}
$$

Equating real and imaginary parts in the above equation, we get

$$
\left.\begin{array}{l}
u=4 a^{4}+196 b^{4}-168 a^{2} b^{2}-28 a^{3} b+196 a b^{3} \tag{11}\\
v=a^{4}+49 b^{4}-42 a^{2} b^{2}+16 a^{3} b-112 a b^{3}
\end{array}\right\}
$$

Substituting (11) in (2), the corresponding integer solutions to (1) are given by
$x \llbracket, b \overline{=} 5 a^{4}+245 b^{4}-210 a^{2} b^{2}-12 a^{3} b+84 a b^{3}$
y 【,$b \overline{\bar{\sim}} 3 a^{4}+147 b^{4}-126 a^{2} b^{2}-44 a^{3} b+308 a b^{3}$
$z \mathbb{4}, b=a^{2}+7 b^{2}$

PROPERTIES:

 Number

$$
>48 \underset{\mathbf{x}}{\mathbf{A}}, A_{,} \text {is a Nasty Number. }
$$

PATTERN: 4

Instead of (9), consider 23 as

$$
\begin{equation*}
23=\frac{(9+i \sqrt{7})(9-i \sqrt{7})}{4^{2}} \tag{12}
\end{equation*}
$$

Following the analysis similar to pattern-3, the corresponding integer solutions to (1) are given by
$x \backslash B=80 A^{4}+3920 B^{4}-3360 A^{2} B^{2}+19272 A^{3} B-1344 A B^{3}$
$y \mathbb{A}, B=72 A^{4}+3528 B^{4}-3024 A^{2} B^{2}-416 A^{3} B+2912 A B^{3}$

$$
z A, B=4 A^{2}+28 B^{2}
$$

PROPERTIES:

$>z(A, A) t_{58, B} \equiv 4\left(\bmod 27_{-}^{-}\right.$.

PATTERN: 5

Consider (3) as

$$
\begin{equation*}
u^{2}+7 v^{2}=23 z^{4} * 1 \tag{13}
\end{equation*}
$$

Write 1 as

$$
\begin{equation*}
1=\frac{(+i \sqrt{7})(-i \sqrt{7}}{4^{2}} \tag{14}
\end{equation*}
$$

Substituting (9), (10) and (14) in (13) and employing the method of factorization, define

$$
u+i \sqrt{7} v=(+i \sqrt{7})+i \sqrt{7} b)\left[\frac{3+i \sqrt{7}}{4}\right]
$$

Equating the real and imaginary parts in the above equation, we get

$$
\begin{align*}
& u=\frac{1}{4} a^{4}+98 b^{4}-42 a^{2} b^{2}+196 a^{3} b-1372 a b^{3} \tag{15}\\
& v=\frac{1}{4}\left\lfloor a^{4}+343^{4}-294 a^{2} b^{2}+8 a^{3} b-56 a b^{3}\right.
\end{align*}
$$

Substituting (15) in (2), we've

$$
\begin{aligned}
& x=\frac{1}{4}\left\{a^{4}+441 b^{4}-336 a^{2} b^{2}+204 a^{3} b-1428 a b^{3}-\right. \\
& y=\frac{1}{4}\left\{5 a^{4}-245 b^{4}+252 a^{2} b^{2}+188 a^{3} b+1316 a b^{3}\right.
\end{aligned}
$$

Replacing ' a ' by " 4 A " and ' b ' by " 4 B " in the above equations and (10), we have

$$
\begin{aligned}
& x A, B=576 A^{4}+28224 B^{4}-21504 A^{2} B^{2}+13056 A^{3} B-91392 A B^{3} \\
& y \mathbb{A}=-320 A^{4}-15680 B^{4}+16128 A^{2} B^{2}+12032 A^{3} B+84224 A B^{3} \\
& z A, B \doteqdot 16 A^{2}+112 B^{2}
\end{aligned}
$$

which represent the non- zero distinct integer solutions to (1).

PROPERTIES：

$>y 【 B 〕 z \llbracket B 〕 15681 t_{4, B^{2}}-6 F_{4, B, 6}-32472 P_{B}^{4}-53330 C P_{9, B}-t_{6, B} \equiv-304(\operatorname{nod} 33286)$
$>z(4,1) t_{34, A} \equiv 7(\operatorname{nod} 15)$

PATTERN： 6

Substituting（10），（12）and（14）in（13）and following the procedure as in pattern－5，the corresponding integer solutions to（1）are given by，
$x A, B \doteqdot 1152 A^{4}+56448 B^{4}-16128 A^{2} B^{2}-2016 A B-6656 A^{3} B+46592 A B^{3}$
$y\left(A, B=448 A^{4}+21592 B^{4}-6272 A^{2} B^{2}-784 A B-13056 A^{3} B+92032 A B^{3}\right.$
$z A, B=16 A^{2}+112 B^{2}$

PROPERTIES：

$>2 \boldsymbol{A} \boldsymbol{B}, B$ is a Nasty Number

CONCLUSION：

In this paper，six different patterns of integer solutions to（1）are presented．To conclude，one may search for other patterns of non－zero distinct integer solutions to the considered Bi－quadratic with three unknowns and their corresponding properties．

REFERENCES:

1) Carmichael, R.D., The Theory of Numbers and Diophantine Analysis, Dover Publications, New York (1959).
2) Dickson,L.E., History of the theory of numbers, Vol II, Chelsia Publishing Co., New York.(1952).
3) Mordell, L.J., Diophantine Equations, Academilc Press, London (1969).
4) Telang, S.G., Number theory, Tata Mc Graw-Hill Publishing Company, New Delhi (1996).
5) Nigel, P.Smart, The Algorithmic Resolutions of Diophantine Equations, Cambridge University Press, London (1999).
6) M.A.Gopalan, G.Sangeetha, Integral Solutions of Ternary non-homogeneous biquadratic equation $x^{4}+x^{2}+y^{2}-y=z^{2}+z$ Acta ciencia indica, Vol XXXV IIM No.4, 799-803, 2011.
7) M.A.Gopalan, S.Vidhyalakshmi, G.Sangeetha, On the Ternary bi-quadratic nonhomogeneous equation $\mathbb{C} k+1 \boldsymbol{\zeta}^{2}+y^{2}+x y \overline{\bar{\jmath}} z^{4}$ Indian Journal of Engineering Vol No.1, 37-40, Nov 2012.
8) M.A.Gopalan, S.Vidhyalakshmi, G.Sangeetha Integral Solutions of Ternary bi-quadratic non-homogeneous equation $\left(x+1 \int x^{2}+y^{2}\right)+\left(\alpha+1 \bar{x} y=z^{4}\right.$ JARCE, Vol 6 No. 2 97-98, July-Dec 2012.
9) M.A.Gopalan, G.Sangeetha, S.Vidhyalakshmi, Intgral Solutions of Ternary bi-quadratic non-homogeneous equation $\left(+1 \boldsymbol{X}^{2}+y^{2} \backslash \mathbb{\jmath} k+1 \bar{x} y=z^{4}\right.$ Archimedes J.Math, 3(1), 6771, 2013.
10) M.A.Gopalan, S.Vidhyalakshmi, S.Mallika, Integral solutions of ternary bi-quadratic equation $24^{2}+y^{2}+3 x y=\left(x^{2}+7 z^{\pi} z^{4}\right.$ IJMIE, Vol 3, issue 5, 408-414 May 2013.
11) M.A.Gopalan, V.Geetha, Integral solutions of ternary bi-quadratic $x^{2}+13 y^{2}=z^{4}$ IJLRST, Vol 2, issue 2, 59-61, Mar-Apr 2013.
12) M.A.Gopalan, G.Sangeetha, S.Vidhyalakshmi, on the ternary bi-quadratic nonhomogeneous equation $x^{2}+n y^{3}=z^{4}$ Cayley J.Maths, 2121, 169-174,2013.
13) M.A.Gopalan, S.vidhyalakshmi, A.Kavitha, Integral points on the bi-quadratic equation with 3 unknowns $\left\langle+y+z^{3}=z^{2}\left(x y-x^{2}-y^{2}\right.\right.$, IJMSEA, Vol 7, No-VI, 81-84, Nov 2013.

[^0]: * Former VC, Bharathidasan University, Trichy-620 024, Tamil Nadu, India.
 ** Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil Nadu, India.
 *** M.Phil student, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil Nadu, India.
 The financial support from the UGC, New Delhi (F.MRP-5122/14(SERO/UGC)
 dated March 2014) for a part of this work is gratefully acknowledged.

